Driven Oscillators: The most important problems involving oscillators have a forcing (or driving) term on the right hand side: We will focus on the problem

\[mu'' + \gamma u' + ku = F_0 \cos(\omega t), \]

where \(m > 0, \gamma \geq 0, \) and \(k > 0. \)

This problem can be solved by the method of undetermined coefficients. This is quite easy when \(\gamma = 0, \) but it’s a mess when \(\gamma > 0. \) We separate the problem into three cases:

Case I: \(\gamma = 0, \omega \neq \omega_0 = \sqrt{k/m}. \)

Case II: \(\gamma = 0, \omega = \omega_0. \)

Case III: \(\gamma > 0 \)

Examples of Case I and II: Solve the IVPs \(u'' + ku = \cos(3t), u(0) = 0, u'(0) = 0, \) with \(k = 10 \) (Case I) and \(k = 9 \) (Case II).

As shown in class, the solutions are \(u(t) = -\cos(\sqrt{10}t) + \cos(3t), \) and \(u(t) = 1/6t \sin(3t), \) respectively. Here are some graphs of solutions.

Figure 1: The solutions to the IVPs for a short time interval. The solutions look almost identical.

Figure 2: The solutions to the IVPs for a longer time interval.

The envelope of the solution with \(k = 10 \) can be obtained from the trig identities

\[\cos(A \pm B) = \cos(A) \cos(B) \mp \sin(A) \sin(B). \]
We can combine these together, anticipating that we want an identity for \(u(t) = -\cos(\sqrt{10}t) + \cos(3t) \), where \(\sqrt{10} > 3 \):

\[-\cos(A + B) + \cos(A - B) = 2\sin(A)\sin(B) \]

Applying this to our problem with \(A + B = \sqrt{10} \) and \(A - B = 3 \), so that \(A = (\sqrt{10} + 3)/2 \approx 3.08 \) and \(B = (\sqrt{10} - 3)/2 \approx 0.0811 \):

\[u(t) = -\cos(\sqrt{10}t) + \cos(3t) = 2\sin(A t)\sin(B t) = [2\sin(B t)]\sin(A t) \]

The “carrier” wave is \(\sin(A t) \) which has period \(2\pi/A \approx 2.04 \) and the “envelope” is \(u(t) = \pm 2\sin(B t) \). Now, \(2\sin(B t) \) has period \(2\pi/B \approx 77.4 \). The envelope is plotted as a dotted line in Figures 1 and 2. Figure 2 (\(k = 10 \)) shows the phenomenon of “beats,” wherein the amplitude of the oscillation varies with a period of half of 77.4, which is 38.7.

Case III: This is the most important case. Any oscillators you will run into will have some damping. The general solution to equation (1) is

\[u(t) = u_c(t) + U_p(t) \]

where \(u_c(t) \to 0 \) as \(t \to \infty \), since the oscillator is damped (\(\gamma > 0 \)). The *steady state solution*, also called the *forced response*, has the same frequency as the driving term:

\[U_p(t) = A\cos(\omega t) + B\sin(\omega t) = R\cos(\omega t - \delta) \]

If the \(A, B \) form of the particular solution is substituted into equation (1), we get a system of two linear equations for \(A \) and \(B \) which have the solution

\[A = \frac{F_0m(\omega_0^2 - \omega^2)}{m^2(\omega_0^2 - \omega^2)^2 + \gamma^2\omega^2}, \quad B = \frac{F_0\gamma\omega}{m^2(\omega_0^2 - \omega^2)^2 + \gamma^2\omega^2}. \]

Note that these expressions use \(\omega_0 = \sqrt{k/m} \), even though the oscillator is damped. The “rectangular coordinates” \(A \) and \(B \) can be converted to “polar coordinates” \(R \) and \(\delta \), as described in in §3.8. Note that \(B > 0 \), so \(\delta \) is in quadrant I or II. The inverse cosine function gives an angle in quadrant I or II, so the best expressions are

\[R = \frac{F_0}{\sqrt{m^2(\omega_0^2 - \omega^2)^2 + \gamma^2\omega^2}}, \quad \delta = \arccos \left(\frac{m(\omega_0^2 - \omega^2)}{\sqrt{m^2(\omega_0^2 - \omega^2)^2 + \gamma^2\omega^2}} \right) \]

These expressions for the forced response are quite complicated. Nonetheless, we can get a feeling for them by considering limits and drawing figures.

Note that as \(\omega \to 0 \), the response has \(A \to F_0/k \) and \(B \to 0 \). This makes sense, because the right-hand side of (1) is \(F_0 \) when \(\omega = 0 \), and a particular solution in this case is \(U_p(t) = F_0/k \). Furthermore, \(R \to 0 \) as \(\omega \to \infty \).

All of the constants \(m, \gamma \), etc. make the expressions for \(A \) and \(B \) look complicated. However, things are much simpler if we define two dimensionless quantities:

\[x = \frac{\omega}{\omega_0}, \quad \text{and} \quad Q = \frac{m\omega_0}{\gamma} \]
Here, x is the ratio of the driving frequency (ω) to the natural frequency (ω_0). The amount of damping is measured by the so-called oscillator Q, or quality factor. A high Q oscillator has very little damping. With these two variables x and Q, the expression for R is more understandable:

$$R = \frac{F_0}{k} \frac{1}{\sqrt{(1-x^2)^2 + (x/Q)^2}}$$

If we treat Q as a constant, then R as a function of x is a maximum at x_m, with a maximum value of R_m, given by

$$x_m^2 = 1 - \frac{1}{2Q^2}, \quad R_m = \frac{F_0}{k} \frac{Q}{\sqrt{1 - 1/(2Q)^2}} \approx \frac{F_0}{k} \left(Q + \frac{1}{8Q} \right)$$

provided that $Q^2 \geq 1/2$. The approximate expression for R_m is good for Q large. Note that x_m^2 is half way between 1 (when $\omega = \omega_0$) and the square of the quasifrequency μ, since it can be shown that $(\mu/\omega_0)^2 = 1 - 1/Q^2$.

Figure 3: The scaled amplitude ($\text{Amp} = Rk/F_0$) of the steady state response as a function of $x = \omega/\omega_0$ for $Q = 10, 5, 2, 1/\sqrt{2}$, and $1/3$. The dotted line goes through the maxima of the curves, (x_m, R_m).

Figure 4: The phase δ of the steady state response as a function of $x = \omega/\omega_0$ for $Q = 10, 5, 2, 1/\sqrt{2}$, and $1/3$. As $Q \to \infty$, the phase approaches the step function $\delta = 0$ if $x < 1$ and $\delta = \pi$ if $x > 1$.
Using Complex Numbers: The standard method of calculating of A and B in the particular solution is truly gruesome. However, it is quite easy using (what else?) complex numbers. The ODE (1) has the form

$$L[u(t)] = mu'' + \gamma u' + ku = Re \left(F_0 e^{i\omega t} \right)$$

where L is a linear operator. We look for a solution of the form

$$U_p(t) = A \cos(\omega t) + B \sin(\omega t) = Re \left((A - i B) e^{i\omega t} \right)$$

When we plug this into the ODE to find $U_p(t)$, we just have to solve

$$L[(A - i B)e^{i\omega t}] = F_0 e^{i\omega t}.$$

Example: Find a particular solution to

$$L[u] = u'' + u' + 4u = \cos(\omega t)$$

To find the particular solution, we need to solve

$$L[(A - i B)e^{i\omega t}] = e^{i\omega t}$$

for A and B. The operator $L[(A - i B)e^{i\omega t}]$ is easily computed, since A and B are constants. The result is

$$(A - i B)(-\omega^2 + i\omega + 4)e^{i\omega t} = e^{i\omega t}.$$

We can divide both sides by $e^{i\omega t}$ to get

$$(A - i B)(-\omega^2 + i\omega + 4) = 1,$$

or

$$(A - i B) = \frac{1}{-\omega^2 + i\omega + 4} = \frac{1}{4 - \omega^2 + i\omega} = \frac{4 - \omega^2 - i\omega}{(4 - \omega^2)^2 + \omega^2}.$$

Therefore $A = \frac{4 - \omega^2}{(4 - \omega^2)^2 + \omega^2}$ and $B = \frac{\omega}{(4 - \omega^2)^2 + \omega^2}$. The steady state solution is

$$U_p(t) = \frac{4 - \omega^2}{(4 - \omega^2)^2 + \omega^2} \cos(\omega t) + \frac{\omega}{(4 - \omega^2)^2 + \omega^2} \sin(\omega t)$$

Alternative Method: The way to really do these problems is to let \hat{A} be a complex amplitude and write

$$U_p(t) = Re(\hat{A} e^{i\omega t}) = Re(\hat{A}) \cos(\omega t) - Im(\hat{A}) \sin(\omega t)$$

Then the previous problem becomes:

$$\hat{A}(-\omega^2 + i\omega + 4)e^{i\omega t} = e^{i\omega t}.$$

or

$$\hat{A} = \frac{1}{-\omega^2 + i\omega + 4} = \frac{1}{4 - \omega^2 + i\omega} = \frac{4 - \omega^2 - i\omega}{(4 - \omega^2)^2 + \omega^2}.$$

This gives the same solution as before. (These two methods are almost the same.)

Extra Credit: Use either of these complex number methods to justify the general formulas (8), (9), and (10) in the book. This is worth 5 class points. Turn it in directly to Prof. Swift by Oct. 15.